Refinement of Classical Proofs for Program Extraction

نویسنده

  • Diana Ratiu
چکیده

The A-Translation enables us to unravel the computational information in classical proofs, by first transforming them into constructive ones, however at the cost of introducing redundancies in the extracted code. This is due to the fact that all negations inserted during translation are replaced by the computationally relevant form of the goal. In this thesis we are concerned with eliminating such redundancies, in order to obtain better extracted programs. For this, we propose two methods: a controlled and minimal insertion of negations, such that a refinement of the A-Translation can be used and an algorithmic decoration of the proofs, in order to mark the computationally irrelevant components. By restricting the logic to be minimal, the Double Negation Translation is no longer necessary. On this fragment of minimal logic we apply the refined A-Translation, as proposed in (Berger et al., 2002). This method identifies further selected classes of formulas for which the negations do not need to be substituted by computationally relevant formulas. However, the refinement imposes restrictions which considerably narrow the applicability domain of the A-Translation. We address this issue by proposing a controlled insertion of double negations, with the benefit that some intuitionistically valid Π2formulas become provable in minimal logic and that certain formulas are transformed to match the requirements of the refined A-Translation. We present the outcome of applying the refined A-translation to a series of examples. Their purpose is two folded. On one hand, they serve as case studies for the role played by negations, by shedding a light on the restrictions imposed by the translation method. On the other hand, the extracted programs are characterized by a specific behaviour: they adhere to the continuation passing style and the recursion is in general in tail form. The second improvement concerns the detection of the computationally irrelevant subformulas, such that no terms are extracted from them. In order to achieve this, we assign decorations to the implication and universal quantifier. The algorithm that we propose is shown to be optimal, correct and terminating and is applied on the examples of factorial and list reversal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Greatest Common Divisor: A Case Study for Program Extraction from Classical Proofs

Yiannis Moschovakis suggested the following example of a classical existence proof with a quantifier–free kernel which does not obviously contain an algorithm: the gcd of two natural numbers a1 and a2 is a linear combination of the two. Here we treat that example as a case study for program extraction from classical proofs. We apply H. Friedman’s A– translation [3] followed by a modified realiz...

متن کامل

Light Functional Interpretation - an optimization of Gödel’s technique towards the extraction of (more) efficient programs from (classical) proofs

We give a Natural Deduction formulation of an adaptation of Gödel’s functional (Dialectica) interpretation to the extraction of (more) efficient programs from (classical) proofs. We adapt Jørgensen’s formulation of pure Dialectica translation by eliminating his “Contraction Lemma” and allowing free variables in the extracted terms (which is more suitable in a Natural Deduction setting). We also...

متن کامل

Light Functional Interpretation - an optimization of Gödel ’ s technique towards the extraction of ( more ) efficient programs from ( classical ) proofs - Technical Appendix

We give a Natural Deduction formulation of an adaptation of Gödel’s functional (Dialectica) interpretation to the extraction of (more) efficient programs from (classical) proofs. We adapt Jørgensen’s formulation of pure Dialectica translation by eliminating his “Contraction Lemma” and allowing free variables in the extracted terms (which is more suitable in a Natural Deduction setting). We also...

متن کامل

On the pointfree counterpart of the local definition of classical continuous maps

The familiar classical result that a continuous map from a space $X$ to a space $Y$ can be defined by giving continuous maps $varphi_U: U to Y$ on each member $U$ of an open cover ${mathfrak C}$ of $X$ such that $varphi_Umid U cap V = varphi_V mid U cap V$ for all $U,V in {mathfrak C}$ was recently shown to have an exact analogue in pointfree topology, and the same was done for the familiar cla...

متن کامل

Re ned Program Extraction from Classical Proofs

It is well known that it is undecidable in general whether a given programmeets its speci cation In contrast it can be checked easily by a machine whether a formal proof is correct and from a constructive proof one can automatically extract a corresponding program which by its very construction is correct as well This at least in principle opens a way to produce correct software e g for safety ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011